Affiliation:
1. Department of Mining Machinery Engineering, Indian Institute of Technology (ISM), India
2. Central Mechanical Engineering Research Institute (CSIR-CMERI), India
Abstract
Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD) are data-driven self-adaptive signal processing methods to decompose a complex signal into different modes of separate spectral bands, in to a number of Intrinsic Mode Functions (IMFs). While the EMD extracts modes recursively and empirically, the VMD extracts modes non-recursively and concurrently. In this paper, both the EMD and the VMD have been applied to examine their efficacy in fault diagnosis of rolling element bearing. However, all the IMFs do not contain necessary information regarding fault characteristic signature of the bearing. In order to select the effective IMF, the Dynamic Time Warping (DTW) algorithm has been employed here, which gives a measurement of similarity index between two signals. Also, correlation analysis has been carried out to select the appropriate IMFs. Finally, out of the selected IMFs, bearing characteristic fault frequencies have been determined with the envelope spectrum.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献