Selecting effective intrinsic mode functions of empirical mode decomposition and variational mode decomposition using dynamic time warping algorithm for rolling element bearing fault diagnosis

Author:

Kumar Prem Shankar1,Kumaraswamidhas Lakshmi Annamalai1,Laha Swarup Kumar2

Affiliation:

1. Department of Mining Machinery Engineering, Indian Institute of Technology (ISM), India

2. Central Mechanical Engineering Research Institute (CSIR-CMERI), India

Abstract

Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD) are data-driven self-adaptive signal processing methods to decompose a complex signal into different modes of separate spectral bands, in to a number of Intrinsic Mode Functions (IMFs). While the EMD extracts modes recursively and empirically, the VMD extracts modes non-recursively and concurrently. In this paper, both the EMD and the VMD have been applied to examine their efficacy in fault diagnosis of rolling element bearing. However, all the IMFs do not contain necessary information regarding fault characteristic signature of the bearing. In order to select the effective IMF, the Dynamic Time Warping (DTW) algorithm has been employed here, which gives a measurement of similarity index between two signals. Also, correlation analysis has been carried out to select the appropriate IMFs. Finally, out of the selected IMFs, bearing characteristic fault frequencies have been determined with the envelope spectrum.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3