Firefly artificial intelligence technique for model order reduction with substructure preservation

Author:

Alsmadi Othman1,Al-Smadi Adnan2,Gharaibeh Esra’a2

Affiliation:

1. Electrical Engineering Department, The University of Jordan, Jordan

2. Electronics Engineering Department, Yarmouk University, Jordan

Abstract

Model order reduction (MOR) is a process of finding a lower order model for the original high order system with reasonable accuracy in order to simplify analysis, design, modeling and simulation for large complex systems. It is desirable that the reduced order model preserves the fundamental properties of the original system. This paper presents a new MOR technique of multi-input multi-output systems utilizing the firefly algorithm (FA) as an artificial intelligence technique. The reduction operation is proposed to maintain the exact dominant dynamics in the reduced order model with the advantage of substructure preservation. This is mainly possible for systems that are characterized as multi-time scale systems. Obtaining the reduced order model is achieved by minimizing the fitness function that is related to the error between the full and reduced order models’ responses. The new approach is compared with recently published work on firefly optimization for MOR, in addition to three other artificial intelligence techniques; namely, invasive weed optimization, particle swarm optimization and genetic algorithm. As a result, simulations show the potential of the FA for the process of MOR.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new mixed order reduction method using bonobo optimizer and stability equation;Microsystem Technologies;2024-09-11

2. Model Order Reduction Strategy for LTI Systems and Application to PID Controller Design;Circuits, Systems, and Signal Processing;2024-08-27

3. A new method for model reduction and controller design of large-scale dynamical systems;Sādhanā;2024-04-25

4. Order Abatement of Linear System Using Mixed Method;2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC);2024-01-27

5. Analysis of Glucose-Insulin Dynamics as an Integrator in Type 1 Diabetes;2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET);2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3