Adaptive neural backstepping control of nonlinear fractional-order systems with input quantization

Author:

Cheng Chao1ORCID,Wang Huanqing2ORCID,Shen Haikuo1,Liu Peter X3

Affiliation:

1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, China

2. School of Mathematics, Bohai University, China

3. Department of Systems and Computer Engineering, Carleton University, Canada

Abstract

This article addresses the tracking control problem of uncertain fractional-order nonlinear systems in the presence of input quantization and external disturbance. An adaptive backstepping scheme is proposed by combining with radial basis function (RBF) neural networks (NNs), fractional-order disturbance observer (FODO), and backstepping method. The RBF NNs are used to approximate the unknown nonlinearities of fractional-order systems. The FODO is designed to compensate for disturbance and uncertain parameters. The hysteresis quantizer is used to avoid chattering that possibly appears in actual application. The stability of the proposed controller is proved by fractional-order Lyapunov method. In addition, all the signals in the closed-loop system are bounded. The effectiveness of the proposed method is confirmed by the simulation results.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3