Output-feedback based robust controller for uncertain DC islanded microgrid

Author:

Mehdi Muhammad1ORCID,Saad Muhammad1,Jamali Saeed Zaman1,Kim Chul-Hwan1

Affiliation:

1. Department of Electrical and Computer Engineering, Sungkyunkwan University, Republic of Korea

Abstract

The integration of renewable energy resources to DC microgrid has captured the attention of the researchers in recent years. One of the active field of application of DC distribution is the islanded DC microgrid (DC ImG). The DC ImG present numerous challenges to researchers. Among many challenges, the regulation of voltage and stability of the system is indispensable to efficient operation. The voltage stability problem becomes more prominent when the system is exposed to disturbances and possess uncertainties in parameters. However, challenges can be overcome by skilful design of a robust controller for the system. Therefore, in this paper, an output-feedback based centralized robust control scheme is proposed. The proposed controller is designed to maintain good control performance in the presence of parametric uncertainties and exogenous disturbances. The uncertainties of the DC microgrid is modelled as a linear time-varying state-space system. The upper and the lower bounds of the time-varying parameters are determined by a Lebesque-measurable matrix. To attenuate the exogenous disturbances of the system [Formula: see text] based output-feedback controller is designed. The system stability is assured by the Lyapunov function candidate. The output-feedback controller needs only the voltage measurement; therefore, it requires less communication bandwidth as compared to the state-feedback. To obtain the controller parameters linear matrix inequality constraints are formulated and solved. The performance of the proposed controller is verified via simulations and compared with the existing schemes.

Funder

national research foundation of korea

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3