Affiliation:
1. College of Automation, Nanjing University of Posts and Telecommunications, Nanjing, China
2. Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
Abstract
We are concerned with the fault-tolerant tracking control affair for a class of large-scale multi-input and multi-output (MIMO) nonlinear systems suffering from actuator failures. Taking advantage of the mean-value theory and the implicit function theorem, the non-affine subsystems are transformed into affine forms. Neural networks (NNs) are utilized to approximate unknown virtual control signals, and then an adaptive NN-based decentralized tracking control strategy is exploited recursively by combining backstepping methods as well as the dynamic surface control (DSC) methodology. In theory, the stability of the resulting whole system is rigorously analysed, where it is proven that all signals remain uniformly ultimately bounded (UUB) and the designed strategy can guarantee the convergence of tracking errors via a suitable choice of control parameters. Finally, two simulation examples, both practical and numerical examples, are illustrated to verify the feasibility of the theoretical claims.
Funder
Ph. D. Programs Foundation of Ministry of Education of China
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献