Compensation of gap sensor for high-speed maglev train with RBF neural network

Author:

Jing Yongzhi1,Xiao Jian1,Zhang Kunlun1

Affiliation:

1. Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, P.R.China

Abstract

The gap sensor plays an important role for a electro-magnetic levitation system, which is a critical component of high-speed maglev trains. An artificial neural network is a promising area in the development of intelligent sensors. In this paper, a radial basis function (RBF) neural network modelling approach is introduced for the compensation of the non-contact inductive gap sensor of the high-speed maglev train. As an inverse model compensator, the designed RBF-based model is connected in series to the output terminal of the gap sensor. The network is trained by using a gradient descent learning algorithm with momentum. This scheme could estimate accurately the correct air-gap distance in a wide range of temperatures. The simulation studies of this model show that it can provide a compensated gap value with an error of less than ±0.4 mm at any temperature from 20° to 80°C. In particulr, the maximum estimation error can be reduced to ±0.1 mm when the working gap varies from 8 to 12 mm. The experimental results indicate that the compensated gap signal could meet the requirements of the levitation control system.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3