Asymmetric indirect-driven self-sensing actuation and its application to piezoelectric systems

Author:

Hu Bin1,Pang Chee Khiang2ORCID,Wan Jie1,Cao Shuyu2,Tan Jern Khang3,Li Hui1,Wang Jianyi1,Guo Guoxiao4

Affiliation:

1. Western Digital R&D Center, Singapore

2. Engineering Cluster, Singapore Institute of Technology, Singapore

3. Western Digital (M) Sdn Bhd, Malaysia

4. Servo Track Writing Technology Group, Western Digital Corporation, USA

Abstract

Self-sensing actuators use a single piezoelectric element as actuators and sensors simultaneously. This paper proposes the asymmetric indirect-driven self-sensing actuation (AIDSSA) circuit to realize the concept of self-sensing in piezoelectric-actuated systems. Unlike traditional circuits relying on differential amplifiers, the AIDSSA circuit is constructed with only op-amps and uses negative feedback to reject the common-mode interferences from the control command. The new circuit requires simpler conditions of component matching and is able to sense the mechanical responses with a uniform gain and without a phase lag. The actuator is able to achieve full-stroke actuation while sensing is performed, because AIDSSA introduces no undesirable dynamics into the control loop. For the first time, the sensing and actuation transfer functions in self-sensing actuators have become fully decoupled at all frequencies. The investigation takes the form of an industrial application of hard disk drives, and demonstrates the usefulness the circuit in complex positioning systems. Experimental results show that the position error variance, a measure of disturbance rejection capability, has been improved by about 15% in the track-following mode relative to the same servo before modifications.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3