Vehicle lateral motion control via robust delay-dependent Takagi-Sugeno strategy

Author:

Coskun Serdar1ORCID,Li Lin2

Affiliation:

1. Department of Mechanical Engineering, Tarsus University, Turkey

2. School of Traffic and Transportation, Northeast Forestry University, China

Abstract

Presented in this research paper is an integrated direct yaw moment control (DYC) and active front steering (AFS) for an uncertain vehicle lateral dynamics model considering network-induced communication delay, which is a time-varying continuous function with a known upper bound. Firstly, we consider tire cornering stiffness as a non-linear norm-bounded uncertain system that is modeled by fuzzy membership functions, and then vehicle lateral dynamics model is expressed by a set of linear Takagi-Sugeno (T-S) uncertain fuzzy models. Secondly, since the network-induced communication delay in vehicle control system is an inherent reason for stability and performance degradation, we derive a robust delay-dependent [Formula: see text] control methodology via the Lyapunov-Krasovskii functional for stability and performance conditions of the closed-loop system. For the synthesis, the robust control method is employed within the T-S fuzzy-model-based analysis framework and formulations are performed based on the solution of delay-dependent linear matrix inequalities (LMIs). The simulation study is presented using MATLAB/Simulink to show the achieved improvements in tracking variables via the designed robust fuzzy [Formula: see text] state-feedback controller. The proposed fuzzy robust delay-dependent controller is compared with a linear robust delay-dependent controller to clearly show the tracking improvements for different road conditions. Moreover, a performance-based analysis is carried out to demonstrate the advantage of the design with respect to different delay values. It is confirmed from the analysis results that the proposed fuzzy controller can successfully stabilize and possess improved tracking performance for vehicle lateral motion control.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3