Machinery fault diagnosis via an improved multi-linear subspace and locally linear embedding

Author:

Zhang Yansheng12,Ye Dong1,Liu Yuanhong2,Cai Yu2

Affiliation:

1. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin Institute of Technology, Harbin, P. R. China

2. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing, P. R. China

Abstract

Traditional fault diagnosis methods mainly depend on the vector model to describe a signal, which will lead to information loss and the curse of dimensionality. In order to overcome these problems, in this paper an improved multi-linear subspace (MLS) method and locally linear embedding (LLE) are integrated (MLSLLE) to extract significant features. To obtain more information, first it is suggested that multiple sensors should be used to sample the vibration signal of a machine from different positions; then, these data are projected into different subspaces, where each sample is represented as a tensor form, respectively; finally, higher-order singular value decomposition and LLE are introduced to extract significant features. Thus a fault diagnosis method is proposed based on MLSLLE and support vector machines. The advantages of the proposed fault diagnosis method are validated by two real bearing data sets.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3