Guidance law of interceptors against a high-speed maneuvering target based on deep Q-Network

Author:

Wu Ming-yu1ORCID,He Xian-jun1,Qiu Zhi-ming2,Chen Zhi-hua1

Affiliation:

1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, China

2. Naval Research Academy, China

Abstract

This paper proposes a novel guidance law for intercepting a high-speed maneuvering target based on deep reinforcement learning, which mainly includes the interceptor–target relative motion model and value function approximation model based on deep Q-Network (DQN) with prioritized experience replay. First, a method called prioritized experience replay is applied to extract more efficient samples and reduce the training time. Second, to cope with the discrete action space of DQN, a normal acceleration is introduced to the state space, and the normal acceleration rate is chosen as the action. Then, the continuous normal acceleration command is obtained using numerical integral method. Third, to make the line-of-sight (LOS) rate converge rapidly, the reward function whose absolute value tends to zero has been constructed. Finally, compared with proportional navigation guidance (PNG) and the Q-Learning-based guidance law (QLG), the simulation experiments are implemented to intercept high-speed maneuvering targets at different acceleration policies. Simulation results demonstrate that the proposed DQN-based guidance law (DQNG) can obtain continuous acceleration command, make the LOS rate converge to zero rapidly, and hit the maneuvering targets using only the LOS rate. It also confirms that DQNG can realize the parallel-like approach and improve the interception performance of the interceptor to high-speed maneuvering targets. The proposed DQNG also has the advantages of avoiding the complicated formula derivation of traditional guidance law and eliminates the acceleration buffeting.

Funder

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3