Cardioplegia flow dynamics in an in vitro model

Author:

Taft Kimberly J1,Stammers Alfred H1,Jones Clinton C1,Dickes Melinda S1,Pierce Michelle L1,Beck Daniel J1

Affiliation:

1. Division of Clinical Perfusion Education, University of Nebraska Medical Center, Omaha, Nebraska

Abstract

The flow of fluids in extracorporeal circuits does not conform to conventional Poiseuille mechanics which confounds calculating cardioplegia (CP) flow distribution. The purpose of this study was to quantify CP flow dynamics in a model simulating coronary atherosclerosis across varying sized restrictions. An in vitro preparation was designed to assess hydraulic fluid movement across paired restrictions of 51, 81 and 98% lumen reductions. Volume data were obtained at variable flow, temperature, viscosity and pressure conditions. CP delivered through 14- and 18-gauge (GA) conduits at 8°C and 100 mmHg infusion pressure revealed that both four to one and crystalloid CP solutions had significantly less total percentage flow through the 14-GA conduit, p < 0.0001 and p < 0.001, respectively. Overall, 4:1 CP exhibited the most favorable fluid dynamics at 8°C in that it delivered the highest percentages of total CP flow through the smaller lumen conduit. At both 8°C and 37°C delivery, blood CP resulted in the least homogeneous fluid distribution at all delivery parameters. The results in relation to blood viscosity indicate that, although the 8°C blood CP had a significantly greater viscosity than 37°C blood CP, it did not produce an effect in fluid distribution. These data show that increasing the cardioplegic solution hematocrit causes an inhomogeneous fluid distribution regardless of delivery temperature or infusion pressure.

Publisher

SAGE Publications

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3