Mathematical modelling of extracorporeal circulation: simulation of different perfusion regimens

Author:

Bauernschmitt R1,Naujokat E2,Mehmanesh H3,Schulz S2,Vahl C F4,Hagl S4,Lange R3

Affiliation:

1. Department of Cardiac and Vascular Surgery, German Heart Centre, Munich

2. Institute for Industrial Information Technique, University of Karlsruhe

3. German Heart Centre, Munich

4. Department of Cardiac Surgery, University of Heidelberg

Abstract

Computer- and sensor-aided control of the heart-lung machine is considered a major goal for perfusion sciences for the next few years. At present, control of perfusion is achieved by surgeons, anaesthesiologists and perfusionists making short-term decisions, which leads to variations of the perfusion regimens between different centres and even between different teams in the operating theatre. As the basis for an integrated control of extracorporeal circulation (ECC), we proposed a mathematical model for simulating haemodynamics during pulsatile perfusion. This model was then modified to allow it to simulate the effects of different perfusion regimens on arterial haemodynamics and whole body oxygen consumption. The model was constructed on a PC using MATLAB/SIMULINK. The human arterial tree was divided into a multibranch structure consisting of 128 segments characterized by their particular physical properties. Peripheral branches were terminated by a resistance term representing smaller vessels like arterioles and capillaries. Flow and pressure were expressed by the intensity of current and voltage in an electrotechnical analogon; inductivity, resistance and capacitance were implemented according to the physical properties of the arterial tree and the rheology of blood. The effects of different perfusion regimens (pulsatility, flow amount, acid-base regulation) were studied. After introducing an input signal to the model, flow and pressure waves established themselves throughout the simulated arterial tree. During the simulation experiments, marked differences among different perfusion regimens were displayed by the model. Variations in acid-base management mainly influenced the distribution of perfusion: during simulation of low-flow perfusion (1.2 l/min/m2), cerebral blood flow was 6.2 ml/s using an alpha-stat regimen, while it was increased to 9.4 ml/s during pH-stat, caused by an implementation of reduced cerebral resistance. Whole body oxygen consumption was predominantly regulated by the perfusion rate. While central venous oxygen saturation was calculated to be 84.7% during simulation of high-flow perfusion (2.4 l/min/m2), it dropped to 70% during simulation of low-flow perfusion regimens. The model proved to be useful for a realistic simulation of different perfusion regimens. Therefore it can be considered a continuing step for the derivation of a ‘state’ observer leading to the realization of an automatically controlled heart-lung machine.

Publisher

SAGE Publications

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology Nuclear Medicine and imaging,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3