Combining numerical and clinical methods to assess aortic valve hemodynamics during exercise

Author:

Bahraseman HG1,Hassani K1,Khosravi A2,Navidbakhsh M3,Espino DM4,Fatouraee N5,Kazemi-Saleh D2

Affiliation:

1. Department of Biomechanics, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Atherosclerosis Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

3. Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

4. School of Mechanical Engineering, University of Birmingham, UK

5. Department of Biomedical Engineering, Amirkabir University, Tehran, Iran

Abstract

Computational simulations have the potential to aid understanding of cardiovascular hemodynamics under physiological conditions, including exercise. Therefore, blood hemodynamic parameters during different heart rates, rest and exercise have been investigated, using a numerical method. A model was developed for a healthy subject. Using geometrical data acquired by echo-Doppler, a two-dimensional model of the chamber of aortic sinus valsalva and aortic root was created. Systolic ventricular and aortic pressures were applied as boundary conditions computationally. These pressures were the initial physical conditions applied to the model to predict valve deformation and changes in hemodynamics. They were the clinically measured brachial pressures plus differences between brachial, central and left ventricular pressures. Echocardiographic imaging was also used to acquire different ejection times, necessary for pressure waveform equations of blood flow during exercise. A fluid-structure interaction simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. During exercise, peak vorticity increased by 14.8%, peak shear rate by 15.8%, peak cell Reynolds number by 20%, peak leaflet tip velocity increased by 47% and the blood velocity increased by 3% through the leaflets, whereas full opening time decreased by 11%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific hemodynamics at different heart rates.

Publisher

SAGE Publications

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3