Affiliation:
1. Pediatric Perfusion, Norton Children’s Hospital, Louisville, Kentucky, USA
2. Department of Cardiovascular and Thoracic Surgery, School of Medicine and Norton Children’s Hospital, University of Louisville, Louisville, Kentucky, USA
Abstract
Introduction Over the past decade, there has been an increase in the use of recombinant Anti-Thrombin III (AT-III) administration during neonatal and pediatric short- and long-term mechanical support for the replacement of acquired deficiencies. Recombinant AT-III (Thrombate) administration is an FDA licensed drug indicated primarily for patients with hereditary deficiency to treat and prevent thromboembolism and secondarily to prevent peri-operative and peri-partum thromboembolism. Herein we propose further use of Thrombate for primary AT-III deficiency of the newborn as well as for acquired dilution and consumption secondary to cardiopulmonary bypass (CPB). Methodology All patients undergoing CPB obtain a preoperative AT-III level. Patients with identified deficiencies are normalized in the OR using recombinant AT-III as a patient load, in the CPB prime, or both. Patient baseline Heparin Dose Response (HDR) is assessed using the Heparin Management System (HMS) before being exposed to AT-III. If a patient load of AT-III is given, a second HDR is obtained and this AT-III Corrected HDR is used as the primary goal during CPB. Once CPB is initiated, an AT-III level is obtained with the first patient blood analysis. A subtherapeutic level results in an additional dose of AT-III. During the rewarm period, a final AT-III level is obtained and AT-III treated once again if subtherapeutic. A retrospective, matched analysis review of practice analyzing two groups, a Study Group (Repeat HDR, May 2022 onward) and Matched Group (Without Repeat HDR, July 2019 to April 2022), for age (D), weight (Kg) and operation was conducted. The focus of the study was to determine any change in heparin sensitivity identified post AT-III patient bolus load in the HDR (U/mL), Slope (U/mL/s), ACT (s), and total amount of heparin on CPB (U) and protamine (mg) used in each group. Results No significance was seen in Baseline AT-III (%), post heparin load HDR (U/mL), first CPB ACT (s), first CPB HDR (U/mL), or total CPB heparin (u/Kg) between the two groups. Statistical significance was seen in Baseline ACT (s), Baseline HDR (U/mL), Baseline Slope (U/mL/s), Post Heparin Load ACT (s), first CPB AT-III (%), and Protamine (mg/Kg) ( p < .05). No statistical significance was seen in the Study Intragroup between pre versus post AT-III patient load baseline sample in ACT (s), however significance was seen in HDR (U/mL) and Slope (U/mL/s) ( p < .05). Conclusion Implementation of AT-III monitoring and therapy before and during CPB in conjunction with the HMS allows patients to maintain a steady state of anticoagulation with overall less need for excessive heparin replacement and potentially thrombin activation. The result is obtaining a steady state of anticoagulation, a reduced fluctuation in the heparin and ACT levels and a potential for lower co-morbidities associated with prolonged CPB times.