Effect of varying nitric oxide release to prevent platelet consumption and preserve platelet function in an in vivo model of extracorporeal circulation

Author:

Skrzypchak Amy M.1,Lafayette Nathan G.1,Bartlett Robert H.1,Zhengrong Zhou 2,Frost Megan C.2,Meyerhoff Mark E.2,Reynolds Melissa M.3,Annich Gail M.4

Affiliation:

1. Department of General Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA

2. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

3. MC3 Corporation, Ann Arbor, MI, USA

4. Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI, USA,

Abstract

The gold standard for anticoagulation during extracorporeal circulation (ECC) remains systemic heparinization and the concomitant risk of bleeding in an already critically ill patient could lead to death. Normal endothelium is a unique surface that prevents thrombosis by the release of antiplatelet and antithrombin agents. Nitric oxide (NO) is one of the most potent, reversible antiplatelet agents released from the endothelium. Nitric oxide released from within a polymer matrix has been proven effective for preventing platelet activation and adhesion onto extracorporeal circuits. However, the critical NO release (NO flux) threshold for thrombus prevention during ECC has not yet been determined.1 Using a 4-hour arteriovenous (AV) rabbit model of ECC,2 we sought to find this threshold value for ECC circuits, using an improved NO-releasing coating ( Norel-b ). Four groups of animals were tested at variable NO flux levels. Hourly blood samples were obtained for measurement of arterial blood gases, platelet counts, fibrinogen levels and platelet function (via aggregometry). A custom-built AV circuit was constructed with 36 cm of poly(vinyl)chloride (PVC) tubing, a 14 gauge (GA) angiocatheter for arterial access and a modified 10 French (Fr) thoracic catheter for venous access. The Norel-b coating reduced platelet activation and thrombus formation, and preserved platelet function — in all circuits that exhibited an NO flux of 13.65 × 10— 10 mol·cm—2·min—1. These results were significant when compared with the controls. With the Norel-b coating, the NO flux from the extracorporeal circuit surface can be precisely controlled by the composition of the polymer coating used, and such coatings are shown to prevent platelet consumption and thrombus formation while preserving platelet function in the animal. Perfusion (2007) 22, 193—200.

Publisher

SAGE Publications

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3