Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass

Author:

Lin J1,Dogal NM1,Mathis RK1,Qiu F1,Kunselman A2,Ündar A134

Affiliation:

1. Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children’s Hospital, Hershey, Pennsylvania, USA

2. Public Health and Sciences, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children’s Hospital, Hershey, Pennsylvania, USA

3. Department of Surgery, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children’s Hospital, Hershey, Pennsylvania, USA

4. Department of Bioengineering, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Penn State Hershey Children’s Hospital, Hershey, Pennsylvania, USA

Abstract

Perfusion quality during cardiopulmonary bypass (CPB) procedures can contribute to postoperative neurological complications and influence patient recovery and outcome. Gaseous microemboli generated in the circuit and hemodynamic properties of blood reaching the patient can be monitored during CPB to optimize perfusion. Oxygenators that oxygenate the blood during CPB can significantly influence the quality of blood reaching the patient by their manufacturing designs. New hollow-fiber membrane oxygenators are developed with integrated arterial filters to reduce priming volume and eliminate a separate arterial filter in the circuit. To evaluate the performance of these new oxygenators, we used a simulated model to compare the Quadrox-i Neonatal and the Capiox Baby FX05 neonatal oxygenators and to provide a review of these oxygenators with their respective counterparts which have separate arterial filters. We found that microemboli counts for the new Quadrox-i and Capiox FX05 oxygenators are similar in the arterial line, but different across the oxygenator for all experimental conditions. The arterial purge line diverting blood from the patient reduces microemboli count for the Capiox FX05, but is inconsistent for the Quadrox-i Neonatal. While hemodynamic energy delivered to the patient is similar for both oxygenators, shunted blood flow for the Quadrox-i Neonatal oxygenator is three times higher than the Capiox FX05 (103.6 mL/min vs 33.0 mL/min at 400 mL/min and 35°C) (p<0.001).

Publisher

SAGE Publications

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3