Reduction of exposure to plasticizers in stored red blood cell units

Author:

Münch Frank1,Göen Thomas2,Zimmermann Robert3,Adler Werner4,Purbojo Ariawan1,Höllerer Christine2,Cesnjevar Robert Anton1,Rüffer André1

Affiliation:

1. Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

2. Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

3. Department of Transfusion Medicine and Haemostaseology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

4. Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

Abstract

Introduction: Plastic can be toxic and hazardous to an organism’s health, but it is being widely used in our daily lives. Di-2-ethylhexyl-phthalate is the most common plasticizer in medical devices made of polyvinylchloride and is commonly found in soft bags storing red blood cell units. Di-2-ethylhexyl-phthalate and its degradation product mono-2-ethylhexyl-phthalate can migrate into human body fluids, for example, blood and tissues. The aim of the study was to assess the concentration of plasticizers in red blood cell units according to storage time and after mechanical rinsing using a cell salvage device. Methods: Levels of di-2-ethylhexyl-phthalate and mono-2-ethylhexyl-phthalate were analysed in 50 unwashed red blood cell units using liquid chromatography coupled with tandem mass spectrometry. In addition, phthalate concentrations were measured before and after mechanical rinsing in six more washed red blood cell units with storage times ranging between 36 and 56 days. A linear regression model was determined by the daily increase of di-2-ethylhexyl-phthalate and mono-2-ethylhexyl-phthalate in the stored red blood cell units subject to their storage time (range = 4-38 days), and the effect of mechanical rinsing on their phthalate concentration was calculated. Results: A linear correlation was found between storage time of unwashed red blood cell units and the concentration of di-2-ethylhexyl-phthalate (p < 0.001) or mono-2-ethylhexyl-phthalate (p < 0.001). Stored red blood cell units older than 14 days had significantly higher concentrations of both contaminants than red blood cell units of shorter storage time (p < 0.001). Mechanical rinsing in washed red blood cell units attained a reduction in the di-2-ethylhexyl-phthalate and mono-2-ethylhexyl-phthalate concentration by a median of 53% (range = 18-68%; p = 0.031) and 87% (range = 68-96%; p = 0.031), respectively. Conclusion: Leaching of di-2-ethylhexyl-phthalate and mono-2-ethylhexyl-phthalate into red blood cell units depends on the duration of storage time. Plasticizers can be significantly reduced by mechanical rinsing using cell salvage devices, and thus, red blood cell units can be regenerated with respect to chemical contamination.

Publisher

SAGE Publications

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3