Inflation and deflation timing of the AutoCAT 2 WAVE intra-aortic balloon pump using the autoPilot mode in a clinical setting

Author:

Bakker EWM1,Visser K1,van der Wal A1,Kuiper MA2,Koopmans M2,Breedveld R3

Affiliation:

1. Departement of Perfusion, Medisch Centrum Leeuwarden, The Netherlands

2. Departement of Intensive Care, Medisch Centrum Leeuwarden, The Netherlands

3. Departement of Cardiac Care, Medisch Centrum Leeuwarden, The Netherlands

Abstract

The primary goal of this observational clinical study was to register the occurrence of incorrect inflation and deflation timing of an intra-aortic balloon pump in autoPilot mode. The secondary goal was to identify possible causes of incorrect timing. During IABP assistance of 60 patients, every four hours a strip was printed with the IABP frequency set to 1:2. Strips were examined for timing discrepancies beyond 40 ms from the dicrotic notch (inflation) and the end of the diastolic phase (deflation). In this way, 320 printed strips were examined. A total of 52 strips (16%) showed incorrect timing. On 24 of these strips, the incorrect timing was called incidental, as it showed on only one or a few beats. The other 28 cases of erroneous timing were called consistent, as more than 50% of the beats on the strip showed incorrect timing. We observed arrhythmia in 69% of all cases of incorrect timing. When timing was correct, arrhythmia was found on 13 (5%) of 268 strips. A poor quality electrocardiograph (ECG) signal showed on 37% of all strips with incorrect timing and 11% of all strips with proper timing. We conclude that inflation and deflation timing of the IABP is not always correct when using the autoPilot mode. The quality of the ECG input signal and the occurrence of arrhythmia appear to be related to erroneous timing. Switching from autoPilot mode to operator mode may not always prevent incorrect timing.

Publisher

SAGE Publications

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology Nuclear Medicine and imaging,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3