Hybrid feature selection in a machine learning predictive model for perioperative myocardial injury in noncoronary cardiac surgery with cardiopulmonary bypass

Author:

Li Qian1,Lv Hong1,Chen Yuye1,Shen Jingjia1,shi Jia1,Zhou Chenghui12ORCID

Affiliation:

1. Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Bejing, China

2. Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China

Abstract

Background Perioperative myocardial injury (PMI) is associated with increased mobility and mortality after noncoronary cardiac surgery. However, limited studies have developed a predictive model for PMI. Therefore, we used hybrid feature selection (FS) methods to establish a predictive model for PMI in noncoronary cardiac surgery with cardiopulmonary bypass (CPB). Methods This was a single-center retrospective study conducted at the Fuwai Hospital in China. Patients aged 18-70 years who underwent elective noncoronary surgery with CPB at our institution from December 2018 to April 2021 were enrolled. The primary outcome was PMI, defined as the postoperative cardiac troponin I (cTnI) levels exceeding 220 times of upper reference limit (URL). Statistical analyses were conducted by Python (Python Software Foundation, version 3.9.7 and integrated development environment Jupyter Notebook 1.1.0) and SPSS software version 26.0 (IBM Corp., Armonk, New York, USA). Results A total of 1130 patients were eventually eligible for this study. The incidence of PMI was 20.3% (229/1130) in the overall patients, 20.6% (163/791) in the training dataset, and 19.5% (66/339) in the testing dataset. The logistic regression model performed the best AUC of 0.6893 (95 CI%: 0.6371-0.7382) by the traditional selection method, and the random forest model performed the best AUC of 0.6937 (95 CI%: 0.6416-0.7423) by the union of Wrapper and Embedded method, and the CatBoost model performed the best AUC of 0.6828 (95 CI%: 0.6304-0.7320) by the union of Embedded and forward logistic regression technique, and the Naïve Bayes model achieved the best AUC with 0.7254 (95 CI%: 0.6746-0.7723) by forwarding logistic regression method. Moreover, the decision tree, KNeighborsClassifier, and support vector machine models performed the worse AUC in all selection forms. Furthermore, the SHapley Additive exPlanations plot showed that prolonged CPB, aortic clamp time, and preoperative low platelets count were strongly related to the PMI risk. Conclusions In total, four category feature selection methods were utilized, comprising five individual selection techniques and 15 combined methods. Notably, the combination of logistic regression and embedded methods demonstrated outstanding performance in predicting PMI risk. We also concluded that the machine learning model, including random forest, catboost, and Naive Bayes, were suitable candidates for establishing PMI predictive model. Nevertheless, additional investigation and validation are imperative for substantiating these finding.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3