What is the weakest point of a secured aortic cannula in central extracorporeal membrane oxygenation?

Author:

Lucas Kayla V.1,Stukov Yuriy1,Purlee Matthew S.1ORCID,Delaleu Tatiana1,Sharaf Omar M.1,Bleiweis Mark S.1,Jacobs Jeffrey Phillip1ORCID,Peek Giles J.1

Affiliation:

1. Congenital Heart Center, Division of Cardiovascular Surgery, Departments of Surgery and Pediatrics, University of Florida, Gainesville, Florida, USA

Abstract

Purpose The purpose of this study was to compare techniques for securing the aortic extracorporeal membrane oxygenation (ECMO) cannula, using in vitro models. Methods Two models were studied: a tissue model using porcine aortas and a stand model replacing the aorta with a metal stand to study the system independent of the tissue. Interventions in each model were divided into three experimental groups: Group 1 (3-0 Prolene® + 20-French Medtronic Arterial Cannula EOPA™), Group 2 (4-0 Prolene® + 16-French Medtronic Arterial Cannula DLP Pediatric), and Group 3 (5-0 Prolene® + 8-French Medtronic Arterial Cannula DLP Pediatric). In separate experiments, both gradual and rapid forces were applied to the cannulas, starting with 9.8 Newtons and increasing exponentially if the cannula remained secured. Additionally, the method of securing the tourniquet and the number of ties securing the tourniquet to the cannula were evaluated. Results In the tissue model, even with a minimum force of 9.8 Newtons, the suture pulled through the aortic tissue, leaving sutures and ties intact. In the stand model, two purse-string sutures secured by two ligaclips held the cannula reliably and withstood higher total force. Dislodgement was prevented at forces close to 60 Newtons with only two hemostatic clips included in cannulation. Conclusions The weakest part of the aortic ECMO cannulation system using in vitro experiments was the tissue. Assuming that these experiments translate in vivo, it is therefore critical to prevent any pull on the cannulas by securing ECMO cannulas and ECMO tubing to both the patient and the patient’s bed. Sutures with a larger diameter withstand more force. Two medium hemostatic clips can secure Prolene® sutures within snares as safely as a mosquito hemostat. Two polypropylene purse-string sutures secured by two hemostatic clips were most reliable at greater forces. The rationale for publishing our experiments in this manuscript is to (1) communicate our quantification of possible contributing factors to this rare and likely catastrophic complication of unintended decannulation, (2) increase awareness about this potential complication, and (3) increase vigilance to assure prevention of this dreaded complication.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3