Affiliation:
1. Department of Extracorporeal Circulation, Sint Antonius Ziekenhuis Chirurgie, Nieuwegein, Netherlands
2. Department of Extracorporeal Circulation, UMC Utrecht, Utrecht, Netherlands
Abstract
Background Oxygenators, as used in cardiopulmonary bypass (CPB) circuits, are components with good air removal properties. However, under some conditions the semipermeable characteristics of hollow fibers allow air to accidentally enter the blood side of the CPB circuit. This may occur when a fluid in motion is stopped suddenly by which the rapid change in momentum may cause a relative negative pressure drop, the so-called hammer effect. The hammer effect is not yet described in literature related to CPB. The aim of this in vitro study was to reproduce the hammer effect. Methods The in vitro setup consisted of a CPB circuit with a fully occluded roller pump and one of four test oxygenators. The hammer test was performed by a sudden pump stop. The pressure wave was measured and after the test the residual air present in the oxygenator was forced into the arterial line and measured with a bubble detector. Results We showed that a sudden pump stop could lead to the hammer effect, represented as a relative negative pressure drop in the arterial line. This hammer effect resulted in air release through the semipermeable fibers as we showed in two of the four tested brands of oxygenators. Conclusions We conclude that the hammer effect may occur before connection of the CPB system to the patient, and this may result in air release into the arterial blood side of the oxygenator. The hammer effect can be caused by clamping of the tubing in combination with a centrifugal pump, or by suddenly stopping the roller pump. With this study we would like to raise awareness of the hammer effect.