Affiliation:
1. University of Groningen, The Netherlands
2. Eberhard Karls Universität Tübingen, Germany
3. University of Bristol, UK
Abstract
This article provides a tutorial for analyzing pupillometric data. Pupil dilation has become increasingly popular in psychological and psycholinguistic research as a measure to trace language processing. However, there is no general consensus about procedures to analyze the data, with most studies analyzing extracted features from the pupil dilation data instead of analyzing the pupil dilation trajectories directly. Recent studies have started to apply nonlinear regression and other methods to analyze the pupil dilation trajectories directly, utilizing all available information in the continuously measured signal. This article applies a nonlinear regression analysis, generalized additive mixed modeling, and illustrates how to analyze the full-time course of the pupil dilation signal. The regression analysis is particularly suited for analyzing pupil dilation in the fields of psychological and psycholinguistic research because generalized additive mixed models can include complex nonlinear interactions for investigating the effects of properties of stimuli (e.g., formant frequency) or participants (e.g., working memory score) on the pupil dilation signal. To account for the variation due to participants and items, nonlinear random effects can be included. However, one of the challenges for analyzing time series data is dealing with the autocorrelation in the residuals, which is rather extreme for the pupillary signal. On the basis of simulations, we explain potential causes of this extreme autocorrelation, and on the basis of the experimental data, we show how to reduce their adverse effects, allowing a much more coherent interpretation of pupillary data than possible with feature-based techniques.
Funder
Alexander von Humboldt-Stiftung
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Subject
Speech and Hearing,Otorhinolaryngology
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献