Is Recognition of Speech in Noise Related to Memory Disruption Caused by Irrelevant Sound?

Author:

Oberfeld Daniel1ORCID,Staab Katharina2,Kattner Florian3ORCID,Ellermeier Wolfgang3

Affiliation:

1. Institute of Psychology, Section Experimental Psychology, Johannes Gutenberg-Universität Mainz, Germany

2. Department of Marketing and Human Resource Management, Technische Universität Darmstadt, Darmstadt, Germany

3. Institut für Psychologie, Technische Universität Darmstadt, Darmstadt, Germany

Abstract

Listeners with normal audiometric thresholds show substantial variability in their ability to understand speech in noise (SiN). These individual differences have been reported to be associated with a range of auditory and cognitive abilities. The present study addresses the association between SiN processing and the individual susceptibility of short-term memory to auditory distraction (i.e., the irrelevant sound effect [ISE]). In a sample of 67 young adult participants with normal audiometric thresholds, we measured speech recognition performance in a spatial listening task with two interfering talkers (speech-in-speech identification), audiometric thresholds, binaural sensitivity to the temporal fine structure (interaural phase differences [IPD]), serial memory with and without interfering talkers, and self-reported noise sensitivity. Speech-in-speech processing was not significantly associated with the ISE. The most important predictors of high speech-in-speech recognition performance were a large short-term memory span, low IPD thresholds, bilaterally symmetrical audiometric thresholds, and low individual noise sensitivity. Surprisingly, the susceptibility of short-term memory to irrelevant sound accounted for a substantially smaller amount of variance in speech-in-speech processing than the nondisrupted short-term memory capacity. The data confirm the role of binaural sensitivity to the temporal fine structure, although its association to SiN recognition was weaker than in some previous studies. The inverse association between self-reported noise sensitivity and SiN processing deserves further investigation.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3