Rapid Release From Listening Effort Resulting From Semantic Context, and Effects of Spectral Degradation and Cochlear Implants

Author:

Winn Matthew B.1

Affiliation:

1. Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA

Abstract

People with hearing impairment are thought to rely heavily on context to compensate for reduced audibility. Here, we explore the resulting cost of this compensatory behavior, in terms of effort and the efficiency of ongoing predictive language processing. The listening task featured predictable or unpredictable sentences, and participants included people with cochlear implants as well as people with normal hearing who heard full-spectrum/unprocessed or vocoded speech. The crucial metric was the growth of the pupillary response and the reduction of this response for predictable versus unpredictable sentences, which would suggest reduced cognitive load resulting from predictive processing. Semantic context led to rapid reduction of listening effort for people with normal hearing; the reductions were observed well before the offset of the stimuli. Effort reduction was slightly delayed for people with cochlear implants and considerably more delayed for normal-hearing listeners exposed to spectrally degraded noise-vocoded signals; this pattern of results was maintained even when intelligibility was perfect. Results suggest that speed of sentence processing can still be disrupted, and exertion of effort can be elevated, even when intelligibility remains high. We discuss implications for experimental and clinical assessment of speech recognition, in which good performance can arise because of cognitive processes that occur after a stimulus, during a period of silence. Because silent gaps are not common in continuous flowing speech, the cognitive/linguistic restorative processes observed after sentences in such studies might not be available to listeners in everyday conversations, meaning that speech recognition in conventional tests might overestimate sentence-processing capability.

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3