The Effect of Stimulation Position and Ear Canal Occlusion on Perception of Bone Conducted Sound

Author:

Wang Jie1,Stenfelt Stefan2ORCID,Wu Shengjian1,Yan Zhihao1,Sang Jinqiu34ORCID,Zheng Chengshi34,Li Xiaodong34

Affiliation:

1. School of Electronics and Communication Engineering, Guangzhou University, Guangzhou, China

2. Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden

3. Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

4. University of Chinese Academy of Sciences, Beijing, China

Abstract

The position of a bone conduction (BC) transducer influences the perception of BC sound, but the relation between the stimulation position and BC sound perception is not entirely clear. In the current study, eleven participants with normal hearing were evaluated for their hearing thresholds and speech intelligibility for three stimulation positions (temple, mastoid, and condyle) and four types of ear canal occlusion produced by headphones. In addition, the sound quality for three types of music was rated with stimulation at the three positions. Stimulation at the condyle gave the best performance while the temple showed the worst performance for hearing thresholds, speech intelligibility, and sound quality. The in-ear headphones gave the highest occlusion effect while fully open headphones gave the least occlusion effect. BC stimulated speech intelligibility improved with greater occlusion, especially for the temple stimulation position. The results suggest that BC stimulation at the condyle is generally superior to the other positions tested in terms of sensitivity, clarity, and intelligibility, and that occlusion with ordinary headphones improves the BC signal.

Funder

National Natural Science Foundation of China

Overseas Experts Initiative of Department of Technology and Science of Guangdong Province

Guangzhou University Science Research Project

Guangzhou Science and Technology Plan Project

Open Research Project of the State Key Laboratory of Media Convergence and Communication

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3