A Comparison of Environment Classification Among Premium Hearing Instruments

Author:

Yellamsetty Anusha1,Ozmeral Erol J.1,Budinsky Robert A.1,Eddins David A.1ORCID

Affiliation:

1. Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida, United States

Abstract

Hearing aids classify acoustic environments into multiple, generic classes for the purposes of guiding signal processing. Information about environmental classification is made available to the clinician for fitting, counseling, and troubleshooting purposes. The goal of this study was to better inform scientists and clinicians about the nature of that information by comparing the classification schemes among five premium hearing instruments in a wide range of acoustic scenes including those that vary in signal-to-noise ratio and overall level (dB SPL). Twenty-eight acoustic scenes representing various prototypical environments were presented to five premium devices mounted on an acoustic manikin. Classification measures were recorded from the brand-specific fitting software then recategorized to generic labels to conceal the device company, including (a) Speech in Quiet, (b) Speech in Noise, (c) Noise, and (d) Music. Twelve normal-hearing listeners also classified each scene. The results revealed a variety of similarities and differences among the five devices and the human subjects. Where some devices were highly dependent on input overall level, others were influenced markedly by signal-to-noise ratio. Differences between human and hearing aid classification were evident for several speech and music scenes. Environmental classification is the heart of the signal processing strategy for any given device, providing key input to subsequent decision-making. Comprehensive assessment of environmental classification is essential when considering the cost of signal processing errors, the potential impact for typical wearers, and the information that is available for use by clinicians. The magnitude of differences among devices is remarkable and to be noted.

Funder

Sonova

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3