The Benefit of Hearing Aids as Measured by Listening Accuracy, Subjective Listening Effort, and Functional Near Infrared Spectroscopy

Author:

Vaisberg Jonathan M.1,Gilmore Sean2,Qian Jinyu13,Russo Frank A.24ORCID

Affiliation:

1. Innovation Centre Toronto, Sonova Canada Inc., Kitchener, ON, Canada

2. Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada

3. Department of Communicative Sciences Disorders and Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA

4. Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada

Abstract

There is broad consensus that listening effort is an important outcome for measuring hearing performance. However, there remains debate on the best ways to measure listening effort. This study sought to measure neural correlates of listening effort using functional near-infrared spectroscopy (fNIRS) in experienced adult hearing aid users. The study evaluated impacts of amplification and signal-to-noise ratio (SNR) on cerebral blood oxygenation, with the expectation that easier listening conditions would be associated with less oxygenation in the prefrontal cortex. Thirty experienced adult hearing aid users repeated sentence-final words from low-context Revised Speech Perception in Noise Test sentences. Participants repeated words at a hard SNR (individual SNR-50) or easy SNR (individual SNR-50 + 10 dB), while wearing hearing aids fit to prescriptive targets or without wearing hearing aids. In addition to assessing listening accuracy and subjective listening effort, prefrontal blood oxygenation was measured using fNIRS. As expected, easier listening conditions (i.e., easy SNR, with hearing aids) led to better listening accuracy, lower subjective listening effort, and lower oxygenation across the entire prefrontal cortex compared to harder listening conditions. Listening accuracy and subjective listening effort were also significant predictors of oxygenation.

Funder

Sonova Canada Inc.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3