Application of Bayesian Active Learning to the Estimation of Auditory Filter Shapes Using the Notched-Noise Method

Author:

Schlittenlacher Josef1ORCID,Turner Richard E.2,Moore Brian C. J.1ORCID

Affiliation:

1. Department of Experimental Psychology, University of Cambridge

2. Department of Engineering, University of Cambridge

Abstract

Time-efficient hearing tests are important in both clinical practice and research studies. This particularly applies to notched-noise tests, which are rarely done in clinical practice because of the time required. Auditory-filter shapes derived from notched-noise data may be useful for diagnosis of the cause of hearing loss and for fitting of hearing aids, especially if measured over a wide range of center frequencies. To reduce the testing time, we applied Bayesian active learning (BAL) to the notched-noise test, picking the most informative stimulus parameters for each trial based on nine Gaussian Processes. A total of 11 hearing-impaired subjects were tested. In 20 to 30 min, the test provided estimates of signal threshold as a continuous function of frequency from 500 to 4000 Hz for nine notch widths and for notches placed both symmetrically and asymmetrically around the signal frequency. The thresholds were found to be consistent with those obtained using a 2-up/1-down forced-choice procedure at a single center frequency. In particular, differences in threshold between the methods did not vary with notch width. An independent second run of the BAL test for one notch width showed that it is reliable. The data derived from the BAL test were used to estimate auditory-filter width and asymmetry and detection efficiency for center frequencies from 500 to 4000 Hz. The results agreed with expectations for cochlear hearing losses that were derived from the audiogram and a hearing model.

Funder

Engineering and Physical Sciences Research Council

National Institute for Health Research

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3