Measuring Speech Recognition With a Matrix Test Using Synthetic Speech

Author:

Nuesse Theresa12ORCID,Wiercinski Bianca1,Brand Thomas23,Holube Inga12

Affiliation:

1. Institute of Hearing Technology and Audiology, Jade University of Applied Sciences, Oldenburg, Germany

2. Cluster of Excellence “Hearing4All”, Oldenburg, Germany

3. Medizinische Physik, Universität Oldenburg, Oldenburg, Germany

Abstract

Speech audiometry is an essential part of audiological diagnostics and clinical measurements. Development times of speech recognition tests are rather long, depending on the size of speech corpus and optimization necessity. The aim of this study was to examine whether this development effort could be reduced by using synthetic speech in speech audiometry, especially in a matrix test for speech recognition. For this purpose, the speech material of the German matrix test was replicated using a preselected commercial system to generate the synthetic speech files. In contrast to the conventional matrix test, no level adjustments or optimization tests were performed while producing the synthetic speech material. Evaluation measurements were conducted by presenting both versions of the German matrix test (with natural or synthetic speech), alternately and at three different signal-to-noise ratios, to 48 young, normal-hearing participants. Psychometric functions were fitted to the empirical data. Speech recognition thresholds were 0.5 dB signal-to-noise ratio higher (worse) for the synthetic speech, while slopes were equal for both speech types. Nevertheless, speech recognition scores were comparable with the literature and the threshold difference lay within the same range as recordings of two different natural speakers. Although no optimization was applied, the synthetic-speech signals led to equivalent recognition of the different test lists and word categories. The outcomes of this study indicate that the application of synthetic speech in speech recognition tests could considerably reduce the development costs and evaluation time. This offers the opportunity to increase the speech corpus for speech recognition tests with acceptable effort.

Funder

European Regional Development Fund

Niedersächsisches Vorab of the Lower Saxony Ministry for Science and Culture

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3