Quantifying the Impact of Auditory Deafferentation on Speech Perception

Author:

Liu Jiayue1ORCID,Stohl Joshua2,Lopez-Poveda Enrique A.345ORCID,Overath Tobias1

Affiliation:

1. Department of Psychology and Neuroscience, Duke University, Durham, NC, USA

2. North American Research Laboratory, MED-EL Corporation, Durham, NC, USA

3. Instituto de Neurociencias de Castilla y Leon, University of Salamanca, Salamanca, Spain

4. Departamento de Cirugía, Facultad de Medicina, University of Salamanca, Salamanca, Spain

5. Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain

Abstract

The past decade has seen a wealth of research dedicated to determining which and how morphological changes in the auditory periphery contribute to people experiencing hearing difficulties in noise despite having clinically normal audiometric thresholds in quiet. Evidence from animal studies suggests that cochlear synaptopathy in the inner ear might lead to auditory nerve deafferentation, resulting in impoverished signal transmission to the brain. Here, we quantify the likely perceptual consequences of auditory deafferentation in humans via a physiologically inspired encoding–decoding model. The encoding stage simulates the processing of an acoustic input stimulus (e.g., speech) at the auditory periphery, while the decoding stage is trained to optimally regenerate the input stimulus from the simulated auditory nerve firing data. This allowed us to quantify the effect of different degrees of auditory deafferentation by measuring the extent to which the decoded signal supported the identification of speech in quiet and in noise. In a series of experiments, speech perception thresholds in quiet and in noise increased (worsened) significantly as a function of the degree of auditory deafferentation for modeled deafferentation greater than 90%. Importantly, this effect was significantly stronger in a noisy than in a quiet background. The encoding–decoding model thus captured the hallmark symptom of degraded speech perception in noise together with normal speech perception in quiet. As such, the model might function as a quantitative guide to evaluating the degree of auditory deafferentation in human listeners.

Funder

Charles Lafitte Foundation

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3