Beamforming and Single-Microphone Noise Reduction: Effects on Signal-to-Noise Ratio and Speech Recognition of Bimodal Cochlear Implant Users

Author:

Stronks H. Christiaan1ORCID,Briaire Jeroen J.1,Frijns Johan H.M.12ORCID

Affiliation:

1. Department of Otorhinolaryngology - Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands

2. Leiden Institute for Brain and Cognition, Leiden, The Netherlands

Abstract

We have investigated the effectiveness of three noise-reduction algorithms, namely an adaptive monaural beamformer (MB), a fixed binaural beamformer (BB), and a single-microphone stationary-noise reduction algorithm (SNRA) by assessing the speech reception threshold (SRT) in a group of 15 bimodal cochlear implant users. Speech was presented frontally towards the listener and background noise was established as a homogeneous field of long-term speech-spectrum-shaped (LTSS) noise or 8-talker babble. We pursued four research questions, namely: whether the benefits of beamforming on the SRT differ between LTSS noise and 8-talker babble; whether BB is more effective than MB; whether SNRA improves the SRT in LTSS noise; and whether the SRT benefits of MB and BB are comparable to their improvement of the signal-to-noise ratio (SNR). The results showed that MB and BB significantly improved SRTs by an average of 2.6 dB and 2.9 dB, respectively. These benefits did not statistically differ between noise types or between the two beamformers. By contrast, physical SNR improvements obtained with a manikin revealed substantially greater benefits of BB (6.6 dB) than MB (3.3 dB). SNRA did not significantly affect SRTs per se in omnidirectional microphone settings, nor in combination with MB and BB. We conclude that in the group of bimodal listeners tested, BB had no additional benefits on speech recognition over MB in homogeneous noise, despite the finding that BB had a substantial larger benefit on the SNR than MB. SNRA did not improve speech recognition.

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3