Functional Near-Infrared Spectroscopy as a Measure of Listening Effort in Older Adults Who Use Hearing Aids

Author:

Rovetti Joseph1,Goy Huiwen1ORCID,Pichora-Fuller M. Kathleen2,Russo Frank A.13

Affiliation:

1. Department of Psychology, Ryerson University, Toronto, ON, Canada

2. Department of Psychology, University of Toronto, ON, Canada

3. Toronto Rehabilitation Institute, ON, Canada

Abstract

Listening effort may be reduced when hearing aids improve access to the acoustic signal. However, this possibility is difficult to evaluate because many neuroimaging methods used to measure listening effort are incompatible with hearing aid use. Functional near-infrared spectroscopy (fNIRS), which can be used to measure the concentration of oxygen in the prefrontal cortex (PFC), appears to be well-suited to this application. The first aim of this study was to establish whether fNIRS could measure cognitive effort during listening in older adults who use hearing aids. The second aim was to use fNIRS to determine if listening effort, a form of cognitive effort, differed depending on whether or not hearing aids were used when listening to sound presented at 35 dB SL (flat gain). Sixteen older adults who were experienced hearing aid users completed an auditory n-back task and a visual n-back task; both tasks were completed with and without hearing aids. We found that PFC oxygenation increased with n-back working memory demand in both modalities, supporting the use of fNIRS to measure cognitive effort during listening in this population. PFC oxygenation was weakly and nonsignificantly correlated with self-reported listening effort and reaction time, respectively, suggesting that PFC oxygenation assesses a dimension of listening effort that differs from these other measures. Furthermore, the extent to which hearing aids reduced PFC oxygenation in the left lateral PFC was positively correlated with age and pure-tone average thresholds. The implications of these findings as well as future directions are discussed.

Funder

Natural Sciences and Engineering Research Council of Canada

Sonova AG

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3