Reconstruction of cardiovascular black-blood T2-weighted image by deep learning algorithm: A comparison with intensity filter

Author:

Ogawa Ryo1ORCID,Kido Tomoyuki1,Nakamura Masashi1,Nozaki Atsushi2,Lebel R Marc3,Mochizuki Teruhito14,Kido Teruhito1

Affiliation:

1. Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan

2. MR Collaboration and Development, GE Healthcare, Tokyo, Japan

3. MR Collaboration and Development, GE Healthcare, Calgary, Canada

4. Department of Radiology, I.M. Sechenov First Moscow State Medical University, Russia

Abstract

Background Deep learning–based methods have been used to denoise magnetic resonance imaging. Purpose The purpose of this study was to evaluate a deep learning reconstruction (DL Recon) in cardiovascular black-blood T2-weighted images and compare with intensity filtered images. Material and Methods Forty-five DL Recon images were compared with intensity filtered and the original images. For quantitative image analysis, the signal to noise ratio (SNR) of the septum, contrast ratio (CR) of the septum to lumen, and sharpness of the endocardial border were calculated in each image. For qualitative image quality assessment, a 4-point subjective scale was assigned to each image (1 = poor, 2 = fair, 3 = good, 4 = excellent). Results The SNR and CR were significantly higher in the DL Recon images than in the intensity filtered and the original images ( p < .05 in each). Sharpness of the endocardial border was significantly higher in the DL Recon and intensity filtered images than in the original images ( p < .05 in each). The image quality of the DL Recon images was significantly better than that of intensity filtered and original images ( p < .001 in each). Conclusions DL Recon reduced image noise while improving image contrast and sharpness in the cardiovascular black-blood T2-weight sequence.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3