An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics

Author:

Faridah Faridah1ORCID,Utami Sentagi Sesotya1ORCID,Wijaya Dinta Dwi Agung2ORCID,Yanti Ressy Jaya1ORCID,Putra Wahyu Sukestyastama1ORCID,Adrian Billie1ORCID

Affiliation:

1. Department of Nuclear Engineering and Engineering Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia

2. Institute for Environmental Design and Engineering, University College London, London, UK

Abstract

Indoor air quality is the foundation of a good indoor environment. The COVID-19 pandemic further highlighted the importance of providing real-time airflow distribution information within the Building Environmental Monitoring System (BEMS) to minimize the risk of infectious airborne transmission. This paper discusses the process of developing a predictive model for indoor airflow distribution prediction with indoor and outdoor input parameters using machine learning and its implementation in healthy BEMS for a classroom in the tropical climate region of Yogyakarta, Indonesia. This paper encompassed field measurement and simulation involving outdoor climate conditions and the operational status of the classroom’s windows, Air Conditioning units, and fans. Three machine learning models were constructed using OLS, LASSO, and Ridge methods. Datasets for the modeling were generated from CFD model simulations in IES VE and were assessed for correlation. The mean temperature and velocity differences between the CFD model simulation and measurement results are 0.21°C and 0.083 m/s, respectively. Outdoor climate conditions and the operational status of the classroom’s utilities significantly influence the indoor airflow distribution characteristics. The three models indicate a relatively poor performance, where the classroom had a relatively low sensitivity to input changes. However, the best model performance was achieved using the LASSO method, with average values from post-normalization of [Formula: see text] and Root Mean Square Error (RMSE) of 0.336 and 0.077, respectively. The model was implemented in healthy BEMS on the “Platform for Healthy and Energy Efficient Building Management System.” Practical Application: This research proposed a machine learning model of indoor airflow characteristics of a classroom in Yogyakarta. The proposed model can be adapted to produce monitoring systems that best represent the related conditions. The method can be adopted to develop a relatively simple, low-cost sensor or model to monitor an indoor environment. Future studies may explore the results of the real-world implementation in a case study.

Funder

Ministry of Education, Culture, Research, and Higher Education of the Republic of Indonesia

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3