Alternative solutions for inhibiting Legionella in domestic hot water systems based on low-temperature district heating

Author:

Yang Xiaochen1,Li Hongwei1,Svendsen Svend1

Affiliation:

1. Department of Civil Engineering, Technical University of Denmark, Brovej, Lyngby, Denmark

Abstract

District heating is a cost-effective way of providing heat to high heat density areas. Low-temperature district heating (LTDH) is a promising way to make district heating more energy-efficient and adaptable to well-insulated buildings with low heating demand in the future. However, one concern is the multiplication of Legionella due to insufficient temperature elevation with low-temperature supply. The aim of this study was to find optimal solutions to this dilemma for specific situations. The solutions were of two types: alternative system designs and various methods of sterilization. The alternative design approach can eliminate the risk factors of Legionella by local temperature boosting and restricting system volume. Decentralized substations, micro heat pumps, electric heating elements and electric heat tracing are all investigated as alternative designs. With regard to sterilization methods, thermal treatment, ionization, chlorine, chlorine dioxide, ultraviolet light, photocatalysis and filtration are discussed as the most frequently used methods in hot water systems. The characteristics, efficacy and operation methods of LTDH using the solutions investigated are documented and compared. Finally, recommendations are given for their use in practice. Practical application: The methods for inhibiting Legionella should fit into applicable situations according to their characteristics. This study aims to recommend optimum solutions for inhibiting Legionella in LTDH scenarios, and includes a comprehensive overview of their efficiency, installation, operation and costs, so as to give adequate information for selecting appropriate solutions. In addition to sterilization methods, alternative system design implemented with new technologies can also help prevent Legionella in hot water systems. They have the additional benefit of reducing the heat loss of the hot water system. The alternative design solutions both enrich our options for water sanitation and improve the energy efficiency of our energy systems.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3