Automated optimal design methodology of elevator systems using rules and graphical methods (the HARint plane)

Author:

Al-Sharif Lutfi1,Alqumsan Ahmad M Abu1,Aal Osama F Abdel1

Affiliation:

1. Mechatronics Engineering Department, University of Jordan, Amman, Jordan

Abstract

The design of an elevator system heavily relies on the calculation of the round-trip time under up-peak (incoming) traffic conditions. The round-trip time can either be calculated analytically or by the use of Monte Carlo simulation. However, the calculation of the round-trip time is only part of the design methodology. This paper does not discuss the round-trip time calculation methodology as this has been addressed in detail elsewhere. This paper presents a step-by-step automated design methodology which gives the optimum number of elevators in very specific, constrained arrival situations. A range of situations can be considered and a judgement can be made as to what is the best cost–performance tradeoff. It uses the round trip value calculated by the use of other tools to automatically arrive at an optimal elevator design for a building. It employs rules and graphical methods. The methodology starts from the user requirements in the form of three parameters: the target interval; the expected passenger arrival rate (AR%) which is the passenger arrival in the busiest 5 min expressed as a percentage of the building population; and the total building population. Using these requirements, the expected number of passengers boarding an elevator car is calculated. Then, the round-trip time is calculated (using other tools) and the optimum number of elevators is calculated. Further iterations are carried out to refine the actual number of passengers boarding the elevator and the actual achieved target. The optimal car capacity is then calculated based on the final expected passengers boarding the car. The HARint plane is presented as a graphical tool that allows the designer to visualise the solution. Three different rated speeds are suggested and used in order to explore the possibility of reducing the number of elevator cars. Moreover, the average passenger travel time is used to indicate the need for zoning of buildings. Practical application: This paper has an important application in allowing the designer to arrive at the optimum design for the elevator system using a clearly defined methodology. This ensures that the number of elevators, their speed and their capacity are optimised, thus ensuring that the cost of the elevator system and the space it occupies within the building are minimised. The method also employs a graphical method (the HARint) in order to allow the designer to visualise the optimality and the feasibility of the different design options.

Publisher

SAGE Publications

Subject

Building and Construction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3