A decentralized, model-free, global optimization method for energy saving in heating, ventilation and air conditioning systems

Author:

Wang Shiqiang12,Xing Jianchun1ORCID,Jiang Ziyan2,Dai Yunchuang2

Affiliation:

1. National Defense Engineering College, Army Engineering University of PLA, Jiangsu, China

2. Building Energy Research Center, Tsinghua University, Beijing, China

Abstract

To solve the challenges of high labour and maintenance cost while saving energy in engineering, a decentralized agent-based model-free global optimization method for heating, ventilation and air conditioning systems is proposed. In this novel optimization method, each updated smart equipment is connected according to the physical relationships, such that it can communicate and collaborate with adjacent nodes. Furthermore, to achieve the overall optimal operation of heating, ventilation and air conditioning systems, a decentralized evolutionary algorithm is developed. With the decentralized algorithm executed in all smart nodes in parallel with the feedback of sensor measurements instead of accurate device models, the system can achieve optimal coordination and avoid conflicts between correlated devices. The equivalence between the centralized and decentralized methods is proven. This method is confirmed to be effective through hardware testing based on actual engineering. Practical application: The traditional optimization methods for heating, ventilation and air conditioning are based on a centralized structure with a series of deficiencies, such as high maintenance and labour costs, link congestion and operational lag. This study presents a novel decentralized structure constructed using basic physical relations and a model-free method that possesses the advantages of plug-and-play, rapid development, great flexibility and convenience for engineering implementation without having to build a central monitor. The case study results validate the efficiency and effectiveness of the proposed method.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3