Energy or carbon? Exploring the relative size of universal zero carbon and zero energy design spaces

Author:

Parkin Anna1,Herrera Manuel1ORCID,Coley David A1

Affiliation:

1. Department of Architecture and Civil Engineering, University of Bath, UK

Abstract

One aim of zero carbon, or zero energy, buildings is to help slow climate change. However, regulatory definitions frequently miss substantial emissions, for example ones associated with the materials the building is constructed from, thereby compromising this goal. Unfortunately, including such emissions might restrict the design space, reduce architectural freedom or greatly increase costs. This work presents a new framework for examining the problem. The zero carbon/energy design and regulatory space forms a sub-space of the hyper-volume enclosing all possible designs and regulatory frameworks. A new mathematical/software environment was developed which allows the size and shape of this sub-space to be investigated for the first time. Twenty-four million building design/regulatory standard combinations were modelled and assessed using a tree classification approach. It was found that a worldwide zero standard that includes embodied emissions is possible and is easier to achieve if a carbon rather than an energy metric is adopted, with the design space twice the size for a carbon metric. This result is important for the development of more encompassing regulations, and the novel methods developed applicable to other aspects of construction controlled by regulation where there is the desire to examine the impact of new regulations prior to legislation. Practical application: As energy standards become more strict, and given the growth in non-regulatory standards (such as Passivhaus), there is the need to study the potential impact of any element of a standard on the range of designs that can be built or the materials that can be used. This work sets out a general framework and method for doing this. The approach and results will be of interest to policy makers, but also to engineers and architects wondering what the key constraints to design the adoption of various philosophies to low energy/carbon standards might have within their work. For example, the implications of the building standard (or client) requiring embodied emissions to be included or the energy balance period for renewable generation to be monthly, not annual.

Funder

EPSRC

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3