Performance analysis of hybrid solid desiccant–vapor compression air conditioning system in hot and humid weather of India

Author:

Jani DB1,Mishra Manish1,Sahoo PK1

Affiliation:

1. Department of Mechanical & Industrial Engineering, Indian Institute of Technology, Roorkee, India

Abstract

The performance of hybrid solid desiccant–vapor compression air conditioning system is studied for the typical hot and humid climatic zone of North India (Roorkee). The system consists of a rotary desiccant dehumidifier coupled with heat recovery wheel and a conventional vapor compression air conditioning system. A FORTRAN program was developed to calculate different psychrometric properties like humidity ratio, dry-bulb temperature, wet-bulb temperature, relative humidity, specific heat, etc. at each state point of the system on the basis of ambient and desired inside room conditions, room cooling load, sensible heat factor, and required air flow rate. The overall system performance has been evaluated in terms of the coefficient of performance and the dehumidifier effectiveness. The influence of variation in ambient conditions on regeneration temperature of desiccants has also been discussed. The simulated results are validated using experimental measurements. The present system has ensured a reduction of 79.15% in processing air humidity ratio at an outlet of the desiccant dehumidifier as compared to the outdoor humidity ratio. The results show that the performance of the system is significantly affected by the variations in ambient temperature and humidity ratio. Practical application: The proposed model of solid desiccant–VCR hybrid air conditioning system minimizes the energy usage in comfort cooling applications such as auditoriums, supermarket, hospitals, central library, offices, and lecture halls in hot and humid climate while maintaining an acceptable thermal comfort level and improving the performance. The proposed approach will give valuable insights to the researchers and building engineers to analyze the impacts of ambient conditions on the energy requirements and performance of solid desiccant cooling to ameliorate comfort, energy, and cost savings. Moreover, its potential contribution in environmental protection makes it more attractive at a time where depletion of energy resources and environmental degradation are of major concerns.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3