Characteristics of smoke movement in subway evacuation corridor under different blockage ratios

Author:

Wu Jing1ORCID,Lin Lingmin1,Li Dan1

Affiliation:

1. Key Laboratory of New Energy and Energy-saving in Building, Fujian Province University, Fujian University of Technology, Fuzhou, China

Abstract

This study employed FLUENT to analyse smoke movement and temperature distribution in an evacuation corridor with varying blockage ratios, focusing on the subway tunnel section of Fuzhou Metro Line 4. The simulation results revealed that under natural ventilation condition, the smoke spread area in the evacuation corridor is significantly greater for the high blockage ratio tunnel than for the low blockage ratio tunnel in the tunnel’s length direction, and the entire temperature distribution in the tunnel’s height direction is also high. Following the introduction of longitudinal ventilation, smoke spread in the evacuation corridor and the tunnel ceiling upstream of the fire source are effectively controlled, with smoke suppression movement in the evacuation corridor being significantly faster than that near the tunnel ceiling. As ventilation time increases, the back-layering length of smoke in the evacuation corridor gradually shortens. Within 150 s of ventilation, the critical safety distance below the safety temperature for a low blockage ratio is shorter than that for a high blockage ratio tunnel. In conclusion, longitudinal ventilation increases the cooling rate of high-temperature smoke in a high blockage ratio tunnel, but the influence of high ventilation velocity on evacuation cannot be ignored. Practical application This study provides recommendations for the evacuation plan and procedures under longitudinal ventilation. It is advisable to consider lowering the height of the evacuation corridor in the tunnel from the rail surface, thereby creating a more extensive safety space for personnel evacuation. Additionally, the implementation of prominent marks and voice prompts in the upstream area of the fire outbreak is crucial. This ensures that personnel are directed to evacuate from the upstream section during emergency situations.

Funder

Natural Science Foundation of Fujian Province

Publisher

SAGE Publications

Subject

Building and Construction

Reference21 articles.

1. Zhou D, Yan X, Zheng JL. Study on fire characteristics of subway train running with fire. In: ASCE 14th COTA international conference of transportation professionals, Changsha, China, 4–7 July 2014, 3785–3796.

2. A numerical study on critical velocity and back-layering length with trains’ blockage in longitudinally ventilated tunnel fires

3. Effect of blockage on critical ventilation velocity in longitudinally ventilated tunnel fires

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3