Joint probability distribution of air temperature and global solar radiation for outdoor design conditions based on copula approach

Author:

Jiao Zhichao1ORCID,Emura Kazuo1

Affiliation:

1. Department of Housing and Environmental Design, Graduate School of Human Life Science, Osaka City University, Japan

Abstract

In the common method of compiling outdoor design conditions by annual cumulative frequency of occurrence, the probability of simultaneous occurrence of the selected meteorological elements is not considered, which may lead to an overestimation of air-conditioning equipment capacity design. This paper aims at developing a novel approach for producing the outdoor design conditions, taking into consideration the dependency between the air temperature and global solar radiation, which have a strong influence on the HVAC capacity design. These two meteorological elements are analyzed for specific simultaneous occurrence probability based on the joint distribution. For this purpose, the copula approach which can describe the dependence between these two meteorological elements is used for modeling the joint distribution function. We investigated copula family selection for air temperature and global solar radiation at each hour of hourly weather data for 10 years from 2001 to 2010 in Osaka, Japan. The Joe-Frank copula has the best fitting results for the dependence between the air temperature and global solar radiation. According to the comparison of original exceeding probability and simultaneous occurrence probability, the results show that the design conditions based on the common method can significantly exceed that of the simultaneous occurrence probability method. Practical Application: Outdoor design conditions are used in the building design stage to estimate building performance and select the appropriate air conditioning equipment capacity. Excessive air-conditioning capacity may lead to a large amount of unnecessary energy wastage. Insufficient capacity may lead to not meeting the desired indoor environment conditions of utilization in extreme weather conditions, especially for large office buildings. Therefore, this paper provides a new approach to generate more realistic meteorological conditions for air-conditioning design to improve building energy efficiency.

Publisher

SAGE Publications

Subject

Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3