An investigation of the electrical and thermal performances of the photovoltaic wall with different air gap thicknesses and modes in winter

Author:

Li Kai1,Zhou Yan1ORCID,Wei Difang1,Jin Xiaoyu1

Affiliation:

1. School of Civil and Environmental Engineering and Geography science, Ningbo University, Ningbo, China

Abstract

The purpose of this paper is to investigate the optimal air gap thickness of PV wall in different modes (unclosed, partially-enclosed, enclosed). Based on the heat transfer models and evaluation indexes of PV wall, the electrical and thermal performances are analyzed with experimental method and COMSOL software. The experimental results show that 100 mm thickness can be selected as the optimum size for air gap. The computed results show that PV wall with a 50 mm thickness fully enclosed air gap is the best, with a daily total energy savings of 328.06 Wh/m2, but it is not obvious compared with 100 mm. Therefore, the optimal scheme in winter is to use the 50∼100 mm thickness fully enclosed air gap. The exterior surface temperature of 50 mm and 100 mm enclosed air gap are significantly higher than the bare wall. They can increase equivalent thermal resistances by 0.41 and 0.51 m2·K/W, respectively. Furthermore, the reasons for the total energy savings decreasing with the increase enclosed air gap thickness are discussed. The results of this research can provide some guidance for the application of PV walls in similar climate regions and promote the development of building integrated photovoltaics.

Funder

Ningbo City Public Welfare Foundation

Natural Science Foundation of Zhejiang Province

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3