Affiliation:
1. Department of Building Service Engineering and Process Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
Abstract
The aim of this research was to investigate the scale of carbon dioxide recirculation in rotary energy wheel operated in air handling units. To achieve this objective, a test facility was installed into the indoor air quality and thermal comfort laboratory of BUTE University. A newly developed molecular 3 Å sieve sorption wheel with high humidity transfer efficiencies is integrated into the experimental setup. In this research study, carbon dioxide cross-contamination rate from the exhaust side into the supply side in sorption regenerative air-to-air rotary energy exchanger was conducted by experimental tests. During the study, the correlation between the carbon dioxide cross-contamination, different rotational speeds of the wheel and different volume flow rates of supply air were also investigated in detail. Based on the results, a rotation speed diagram – carbon dioxide cross-contamination diagram – is plotted which can be very useful for researchers, developers and building service engineers in practice. Practical application: The most perfect energy exchanger can transfer both heat and moisture, thus providing a pleasant indoor air quality in the conditioned space. It is beneficial if the exchanger can transfer heat and moisture between the supply and exhaust airstreams, thereby minimizing the capacity and energy consumption of the required auxiliary heater and humidifier. The auxiliary energy reduction can be especially high if the sorption material of the energy wheel is of type 3 Å molecular sieve that has an extremely high humidity transfer capacity. The disadvantage of the rotary energy recovery is the cross-contamination from the exhaust air to the supply air. This is very important because in places such as offices, schools, public institutions, carbon dioxide cross-contamination can cause degradation of indoor air quality.
Subject
Building and Construction
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献