Developments in the definition of fluid traction forces within building drainage vent systems

Author:

Jack L.B.1

Affiliation:

1. Heriot-Watt University, Department of Building Engineering and Surveying, Riccarton, Edinburgh EH14 4AS, UK

Abstract

With developments in the understanding of the pressure regime generated within single-stack building drainage systems, analysis by numerical modelling of complex and detailed systems serving a wide range of sanitary appliances has progressed notably. Computer-based finite-difference simulations incorporate both the complex unsteady fluid flow principles inherent within such systems and the specific design details of the drainage network, thereby allowing the time-dependent pressure response of the system to be assessed and the appliance trap seal retention or depletion to be predicted. This paper develops a new approach to the way in which the fluid flows present within the system are modelled, by providing an enhanced analysis of the waste water and entrained air flow interaction. It also extends the applicability of empirical data and examines resultant friction factor data. This approach can be applied to both single and multiple inlet vertical stack flow and can significantly enhance the designer's ability to predict system response. Combined with unsteady free surface horizontal pipe flow theory, this enables the complete drainage network, from appliance trap through branch connections, vertical stacks and the sewer connection, to be analysed.

Publisher

SAGE Publications

Subject

Building and Construction

Reference20 articles.

1. Swaffield J.A. and McDougall J.A. Designing drainage and associated ventilation networks for buildings Research Focus (No. 27) 11 (Nov. 1996)

2. The simulation of air pressure propagation in building drainage and vent systems

3. Air pressure transient propagation in building drainage vent systems, an application of unsteady flow analysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3