Robust control of HVAC plant II: controller design

Author:

Underwood C.P.1

Affiliation:

1. School of the Built Environment, University of Northumbria, Ellison Place, Newcastle upon Tyne NE1 8ST, UK

Abstract

A linear time-invariant model has been fitted to simulated results from the nonlinear air heating plant described in Part I. The model describes the plant well subject to uncertainty in two of its parameters. These uncertainties have been used to derive an uncertainty weight that, together with a performance weight, have led to an augmented plant description. The resulting augmented plant model was used to develop a robust controller that minimises the H--notm of the closed-loop plant based upon the solution of two algebraic Riccati equations. The resulting controller is of the same order as the augmented (fifth-order) plant. Simulation results of the robust controller compare very favourably with a locally-optimised PID controller developed in Part I. The main advantage of the robust controller is that it merely requires a knowledge of the uncertainty limits of a simple linear model of the plant, whereas a PID controller of comparable performance would need extensive parameter tuning in practice.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3