A computational fluid dynamics study of the effects of buoyancy on air flow surrounding a building

Author:

Yau YH1,Lian YC1

Affiliation:

1. Department of Mechanical Engineering, University of Malaya, Malaysia

Abstract

In designing a durable building envelope, the air flow around a building plays an important role. Buoyancy is one of the factors that can affect air flow patterns. The contribution of outdoor buoyancy to the air flow surrounding a building was studied in this research. The building studied was the headquarters of the Malaysian Energy Commission. This building has a unique architectural outlook, and is called the Diamond Building due to its design. Outdoor field data such as air velocity, ambient temperature and surface temperature were collected during physical measurement. Air flow simulation was then carried out using the computational fluid dynamics software ANSYS. A total of four cases were studied in this research. Qualitative and quantitative analyses of the simulation results were carried out to show the influence of the outdoor buoyancy effect on the air flow patterns. The results showed that the air flow surrounding a building had a maximum velocity of 0.69 m/s dominated by the buoyancy effect when no wind was present. If a stronger natural wind of 3 m/s was present, the buoyancy effect was negligible. Practical application: The new findings from the outdoor buoyancy to the air flow surrounding a building in the tropics could be used as an important guide for building design engineers and researchers. The intention is to improve the design of building envelopes. Surrounding air flow has a significant influence on the building’s ventilation as well as the outdoor contaminant movement, and it penetrates the building’s envelopes. Surrounding airflow, which was considered solely contributed by wind previously, can now be examined at a more accurate airflow pattern by considering the buoyancy effect on airflow.

Publisher

SAGE Publications

Subject

Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3