A novel hybrid Harris hawk optimization and sine cosine algorithm based home energy management system for residential buildings

Author:

Paul Kaushik1ORCID,Hati Debolina2

Affiliation:

1. Department of Electrical Engineering, BIT Sindri, Dhanbad, India

2. Department of Chemistry and Bio Chemistry, University of South Carolina, Columbia, SC, USA

Abstract

Smart grid technology has given users the ability to regulate their home energy in a much more effective manner. In such scenarios, Home Energy Management (HEM) potentially becomes an arduous task, as it necessitates the optimal scheduling of smart appliances in order to reduce energy usage. In this research, a hybrid Harris Hawk Optimization-Sine Cosine Algorithm (hHHO-SCA) has been proposed to develop a meta-heuristic-based HEM system. The hybridization of HHO with SCA has been done to enhance the exploration and exploitation stages of HHO, hence improving its global search phase and effectively optimizing the energy usages. In addition to this, several knapsacks are utilized to guarantee that load demand for power users does not surpass a certain level during the peak hours. In terms of electricity prices and Peak to Average Ratio (PAR) reduction, the hybridization is demonstrated to be beneficial in achieving the objectives. Simulations are performed for a multi-family housing complex with a range of smart equipment. The results achieved with the proposed approach suggest that hHHO-SCA has been comparatively efficient in terms of cost reduction, and PAR, when compared to the other optimization techniques. Practical Application. This home energy management system can be applied to optimally schedule all the smart appliances in a building to minimize electricity consumption and provide the consumer with potential savings in electricity costs.

Publisher

SAGE Publications

Subject

Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3