Parametric analysis of the wind-driven ventilation potential of buildings with rectangular layout

Author:

Ferrucci Margherita123ORCID,Brocato Maurizio1

Affiliation:

1. GSA, ENSA Paris-Malaquais, Université Paris-Est, France

2. FISTEC, Università IUAV di Venezia, Italy

3. Aérodynamique Eiffel, Groupe CSTB, France

Abstract

A method to evaluate the wind-driven ventilation potential of buildings is proposed and some schematic examples are given. Two indicators of such potential are put forward: the first concerning the pressure difference between spots (openings) on the facades and the second concerning the ratio between this pressure difference and a simplified measure of the pressure loss by the internal air flow. These indicators allow one to compare shapes and orientations and can help finding the most appropriate ones during a preliminary stage of the design of a naturally ventilated building. To present the proposal, a two-dimensional computational fluid dynamics parametric model of a schematic building is set, the parameters of which are the aspect ratio of the building's rectangular plan and the wind relative direction. The computational fluid dynamics simulations are supported by literature benchmarks and by qualitative experiments in a wind tunnel. Using this model, the pressure field is computed for 66 cases and their ventilation potentials are evaluated; some graphic outputs are then proposed for a preliminary understanding of the pressure field and of the resulting indicators. The optimal morphology given by such analyses is finally compared to that of some naturally ventilated existing buildings, including Iranian badgir towers. Practical application: This paper provides graphs to predict a building's potential for natural ventilation thereby enabling a designer to determine the wind-driven ventilation in a building and evaluate the structure, optimise its orientation, its aspect ratio and opening positions. These can be used, for example, in the evaluation of naturally ventilated multi-storey rectangular plan buildings (that might employ hyper-ventilation or night cooling) or to evaluate possible passive ventilation strategies for existing buildings. With the support of these graphs, which can be used as computationally inexpensive and fast decision tools, it is possible to simulate configurations, considering the parameters that most influence natural ventilation.

Funder

Université Franco Italienne

Laboratoire GSA, ENSA Paris-Malaquais

Université Paris-Est

Publisher

SAGE Publications

Subject

Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3