Vision-based human activity recognition for reducing building energy demand

Author:

Tien Paige Wenbin1ORCID,Wei Shuangyu1ORCID,Calautit John Kaiser1ORCID,Darkwa Jo1,Wood Christopher1

Affiliation:

1. Department of Architecture and Built Environment, University of Nottingham, Nottingham, UK

Abstract

Occupancy behaviour in buildings can impact the energy performance and the operation of heating, ventilation and air-conditioning systems. To ensure building operations become optimised, it is vital to develop solutions that can monitor the utilisation of indoor spaces and provide occupants’ actual thermal comfort requirements. This study presents the analysis of the application of a vision-based deep learning approach for human activity detection and recognition in buildings. A convolutional neural network was employed to enable the detection and classification of occupancy activities. The model was deployed to a camera that enabled real-time detections, giving an average detection accuracy of 98.65%. Data on the number of occupants performing each of the selected activities were collected, and deep learning–influenced profile was generated. Building energy simulation and various scenario-based cases were used to assess the impact of such an approach on the building energy demand and provide insights into how the proposed detection method can enable heating, ventilation and air-conditioning systems to respond to occupancy’s dynamic changes. Results indicated that the deep learning approach could reduce the over- or under-estimation of occupancy heat gains. It is envisioned that the approach can be coupled with heating, ventilation and air-conditioning controls to adjust the setpoint based on the building space’s actual requirements, which could provide more comfortable environments and minimise unnecessary building energy loads. Practical application Occupancy behaviour has been identified as an important issue impacting the energy demand of building and heating, ventilation and air-conditioning systems. This study proposes a vision-based deep learning approach to capture, detect and recognise in real-time the occupancy patterns and activities within an office space environment. Initial building energy simulation analysis of the application of such an approach within buildings was performed. The proposed approach is envisioned to enable heating, ventilation and air-conditioning systems to adapt and make a timely response based on occupancy’s dynamic changes. The results presented here show the practicality of such an approach that could be integrated with heating, ventilation and air-conditioning systems for various building spaces and environments.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Building and Construction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3