Affiliation:
1. Key Laboratory of ECO-Textiles, College of Textile Science and Engineering, Jiangnan University, China
Abstract
Yarn evenness and hairiness are the appearance characteristics of yarn, which affect textile processing and product quality. To evaluate yarn appearance economically and effectively, an image-processing method is proposed in this paper to analyze yarn appearance on a blackboard. Firstly, an image of a yarn blackboard is captured by the scanner. Then, the yarn core and hairy fibers are segmented from the captured image with image-processing algorithms. The coefficients of variation of the yarn diameter ( CVbd) and the hairiness index ( M) are respectively calculated based on the information about the yarn core and hairy fibers in the image. Finally, the results of the proposed method are compared with those from the Uster Tester. The experimental results demonstrate that yarn appearance can be objectively evaluated using yarn blackboard images. The test results of different yarn blackboards made from the same yarn are stable and consistent. The correlation coefficient between the proposed method and the Uster Tester is 0.98, which proves that the H value can be accurately predicted by the hairiness prediction model. A hairiness prediction model built by the M value is also proven to be accurate when used to predict the corresponding value of the Uster Tester. Compared with the existing yarn evenness and hairiness test methods, the proposed method is more economical and practical.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献