Evaluation of yarn appearance on a blackboard based on image processing

Author:

Wang Lei1ORCID,Lu Yichen1,Pan Ruru1,Gao Weidong1

Affiliation:

1. Key Laboratory of ECO-Textiles, College of Textile Science and Engineering, Jiangnan University, China

Abstract

Yarn evenness and hairiness are the appearance characteristics of yarn, which affect textile processing and product quality. To evaluate yarn appearance economically and effectively, an image-processing method is proposed in this paper to analyze yarn appearance on a blackboard. Firstly, an image of a yarn blackboard is captured by the scanner. Then, the yarn core and hairy fibers are segmented from the captured image with image-processing algorithms. The coefficients of variation of the yarn diameter ( CVbd) and the hairiness index ( M) are respectively calculated based on the information about the yarn core and hairy fibers in the image. Finally, the results of the proposed method are compared with those from the Uster Tester. The experimental results demonstrate that yarn appearance can be objectively evaluated using yarn blackboard images. The test results of different yarn blackboards made from the same yarn are stable and consistent. The correlation coefficient between the proposed method and the Uster Tester is 0.98, which proves that the H value can be accurately predicted by the hairiness prediction model. A hairiness prediction model built by the M value is also proven to be accurate when used to predict the corresponding value of the Uster Tester. Compared with the existing yarn evenness and hairiness test methods, the proposed method is more economical and practical.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3